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Abstract. We construct a new class of non-topological solitons (NTSS) in a renormalizable 
scalar field theory with a U(1) gauge symmetry. In the thin-walled limit, we show an explicit 
solution of gauged NTS. The soliton consists of an interior region of false vacuum supported 
against collapse by the pressure of  massless particles trapped in its interior. For a range 
of values of  the gauge coupling e the soliton is stable and becomes a superconductor. For 
large charge Q, there exist QmaX and Q,!. in the e<e.,;, case. 

1. Introduction 

Non-topological solitons (NTSS) are solutions of classical field theories which are stable 
by virtue of a conserved Noether charge carried by fields confined to a finite region 
of space [l]. In the past few years, these solutions have been studied under the guise 
of Q-balls [2], cosmic neutrino balls [3], quark nuggets [4] and soliton stars [SI, and 
a scenario for producing them in a phase transition in the early universe has been 
considered [ 6 ] .  The simplest example of an NTS is the Q-ball that can appear in a 
U( 1)-invariant theory with a complex scalar field that has nonlinear self-interactions. 
Recently, the gauged Q-balls have been studied in a local U( 1) theory by Lee er al 
[7]. This work provides a possibility for understanding how N T S ~  might arise in realistic 
gauge theories such as electromagnetism, o r  unified theories. These workers have 
considered the following form for the potential: 

A 2 f 6  f 4  p2f2 

6p 4 2 
U ( f )  =:--+- 

where A is a dimensionless constant and p is the mass of a free q5 particle. This 
potential is non-renormalizable. One must consider sixth (or higher) order potentials, 
since a necessary condition for the existence of Q-balls is that the function V(f)/f2 
has a minimum for some non-zero f: The simplest renormalizable theory with NTS 

solutions is an unbroken U(1) theory of two coupled scalar fields: q5 is complex and 
h is Hermitian [8]. In this paper, we study the classical NTS solutions of this theory 
in a local U( 1) theory. It may provide a better understanding of the connection between 
gauge theories and NTSE. 

Consider the Lagrangian for a Hermitian scalar field h(r ,  1 )  and a complex scalar 
field + ( r ,  t)=f(r, t )  exp(iO(r, t ) ) / &  which is coupled to a U(1) gauge field A,: 

2 = f ( J , f ) 2 + f  f 2(J,,B - eA,)2+i(J,h)2 - U(+, h )  -$F,S” (2) 
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where 0, = J, - ieA,, F,. = J,A, - JA,. (For definiteness, we take e > 0.) The interac- 
tion invariant under the discrete symmetry h -* -h  and the U( 1) symmetry + + ei'+ is 
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U(+ ,  h ) =  a2h21+12+$2(h2-hi)2.  (3)  
The conserved charge associated with the U(1) symmetry is 

Q =  d'rf2 --eAo . I (dd: ) (4) 

Spherically symmetric NTSS solutions for the theory of (2) and (3) were first studied 
by Friedberg et a/  [SI for the special case e = 0. For large Q, it is characterized by an 
interior false vacuum region with h = 0, surrounded by a thin domain wall where h 
rapidly approaches its ground state value h = h,. In the NTS interior, the potential 
energy density in h is balanced by the pressure of the massless + charges, which are 
confined by the mass gap a h ,  at the domain wall. As a simple consequence of the 
symmetry breaking for the e # 0 case, the gauge field is massive inside and NTS is a 
U( 1) superconductor. 

2. Qualitative properties of soliton 

We begin by deriving the gauged NTSJ for the e # 0 case as a natural extension of the 
derivation in [ 7 ] .  We expect gauged NTSS to be stable as long as their electrostatic 
self-energy is much smaller than the other energies. Consider a coherent configuration 
of +, h and A,. with a given electric charge eQ. The lowest energy solutions are of the 
spherically symmetric form [l ,  71: 

+(r,  t )  =eiY' f ( r ) /A h ( r , t ) = h ( r )  
( 5 )  

A,( r) = 0 ( P  f 0) A,= (o-g( r ) ) /e  
where we assume w > 0 for definiteness. The lowest-energy state will have no electric 
currents and therefore no magnetic fields. The spatial components ofthe gauge potential 
are zero as there is no magnetic field. We choose a boundary condition A,( r) + 0 as 
r+m.  

The Lagrangian for the configuration described above is 

'> ( 6 )  
1 

L=4?r r 2 d r  - f f ' 2 + ~ g ' ' - f h ' 2 - U ( f , h ) + f f  g I ( 2e 
where the prime denotes djdr. By varying L with respect to J h and g at fixed o we 
find the equations of motion: 

= O  2 J u(J h )  
r Jf 

f "+- f '+ f-2 - (7) 

The energy functional for the solution ( 5 )  can be written as 

(10) 
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The soliton charge is 

Q = 4 ~ 1  r2drf2g.  (11) 

To gain insight into the gauged NTS solitons, we show some qualitative properties of 
the soliton solution. From (8) and (11) we see that 

20 = !im 4pr2g’. (12) 
I-m 

For large r, g+ IO - e2Q/4ar, f is small, h approaches the constant h,, and U ( f ,  h )  - 
m 2 f f 2 / 2 ( m  = a2hi). Equation (7) is reduced to 

2 
r f”+-f’+ ( g z -  m 2 ) f =  0 (13 )  

and f s e x p ( - m r ) / r .  Clearly, a necessary condition for the existence of a 
solution is o < m. Additionally, for the soliton to  he well behaved at the origin,f’, h’ 
and g’ should approach zero at least faster than r for r+0.  By using the asymptotic 
behaviour off ,  h and g, the energy functional can be written as 

ji4j 2 > . , 1 ’ . ! 2 , l , . , 2 ,  , , , r  I,, 
G = Z W V T + T  r U r ( i J  TZn T V ( J , , # ) ) .  - ‘ “ d  - 

Non-topological solitons are quantum mechanically stable if they are the lowest- 
, energy configuration of fixed charge. For the e = O  case, we know that E -  

(4~r/3)m(2p~)-’“’Q’’~ for large Q so that for Q >  Q, the lowest-energy state is favoured 
over the free particle one ( Errcc = pQ). For the e # 0 case, we expect that the energy 
WLll uc: ,,,C.LC’l>GU U V S L  1115 c - U  La>= UUG L U  LUULUIILU ,l2pu1”1u,, W l l l l  L ” U I V I I I ”  cr,crgy 
becoming more important as Q becomes large. However, for the aE/aQ> p case, we 
must consider that some of the charge can be put into the interior region of the soliton 
and some can be put in free particles. As discussed in [7], there exists a maximum 
charge Qma. such that Q > Qmnr, an NTS with charge Qmar plus Q - Qmax free particles 
will be the lowest-energy state for the system. 

__.:‘I L - :  _^_^^^^  -I *..--&L- - - n  ^^^^ A._^ I^ fl-..,-.-L -A-..,”:-- __.:.I. n-..,.....I. 

3. Thin-walled soliton 

Spherically symmetric trial functions are used: 

where R and L are two length parameters. R is the radius of the soliton, given by the 
first zero of F ( r ) .  L is the thickness of the domain wall separating the h = O  interior 
region of false vacuum from the h = h, exterior region of true vacuum. For large Q 
(width of the shell much less than the radius of the NTS) the energy associated with 
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the shell is negligible. In the thin-wall limit +O, we can treat h as a step function. The 
equations of motion (7)-(9) are reduced to 
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2 
r 

2 
r 

F"+- F ' f  FG2 = 0 

G"+- G'-e2F2G=0.  

(18) 

(19) 

One can find the power-series solutions for F and G: 

m (-1)kf2kr2k 
k=n ( Z k f l ) !  

g2kr2k 

F = a  1 

G = b  
x=o ( 2 k + l ) !  

where 

f n =  1 f2=b2 f4= b4-2e2a2b2 , e a b f i e  a b . . .  
go= 1 g2=e a 

g6=e a - 7 e  a b + T e  a b .... 
Furthermore, we show that the recursion formulae of the coefficients f2k  and g2, can 
be expressed as follows: 

- b 6 - s  2 2 4 16 4 4 2 

(22) 4 4  2 1 2  g,=e a -2e a b 2 2  

6 6  3 8 4 4 2  1 6 2 2 4  

The function F ( r )  may be written as a sum of two terms, the first part is independent 
upon e and the second part is dependent upon e: 

1 3 2 4  1 6 4 5 2  3 8 2 3 4  6 

. . . .  (25) - 2e a b r ( T e  a b -Te a b ) r  + a .  
br 5! 7 !  

F(r)=-sin br- 

Spherically symmetric NTS solutions were first studied by Friedberg et a /  [ 8 ]  for 
the special case e = 0. The solutions (15)-(25) are a more general class of solutions. 

In the e<< 1 case, we have the asymptotic solution 

"[sin(o - ( e 2 Q ) / ( 4 a R ) ) r l / r  r s R  
r 3 R  

0 - ( e 2 Q ) / ( 4 4  r S R  
o - ( e 2 Q ) / ( 4 r * )  r 3 R  

0 r < R  
h = (  r 3 R .  

ho 

Substituting (26) - (28)  into (14),  we get 

a Q  aR3m4 Q2e2 E=-+- +- 
R 6p2 8 a R '  
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The last term is the electrostatic self-energy of the NTS in the region r 3 R. The term 
4.rr I," r2 d r  G" is neglected in the asymptotic solution case, which corresponds to the 
electrostatic self-energy of the NTS in the region r s  R. 

For fixed Q, minimizing the energy with respect to R gives 

Rmi,= (2Qp2)"4( 1 +( Qe2)/(8r2))'/*/m. (30) 

At this radius, the energy of the NTS is given by 

E ( R , , . ) = - ( Z p )  47im 2 -114 Q 1/4 (1+@)3'4. 
3 8 712 

For ordinary ( e  =0)  NT%, (31) becomes 

This is less than the plane-wave solution (E  = Qcl) when Q> Q.-(4~rm/31*)~/3p~. 
Hence, when Q> Q, the solution exists and is absolutely stable. For gauging 
( e  # 0) NTSS, we consider the condition E (R,,,,")/ Qp < 1 so that the solitons would be 
stable against dispersion into free particles, i.e. 

The values of Q depend on e, and (p/m)(2P2)"",  which are model-dependent 
parameters. 

From (33) we have 

Q mar  =" C cos[ f -$ E) +; -3 -1 C 

where 

and 

d = - - ( 2 p 2 ) 1 / 4 ,  3 c l  
471 m 

(34) 

(35) 

(37) 

The fact that there is a maximum value for the allowed charge of a gauged NTS points 
to a fundamental difference with the ordinary ( e  =0)  case. In other words, there is a 
maximum size for a gauged NTS, making impossible the existence of the solution in 
bulk form. As mentioned above, stable NTSS must have Qmin < Q < Q,,, . 

There exists a critical value of e above which there is no solution to the equation 
defining Qmax and Qmin. From (34)-(37), it is easy to find that 

e,.,, = ""E)'. - 
271 m 

(38) 

We see that the N T S ~  can occur when e < ec,i t .  
We have studied the renormalizable model containing a non-topological soliton in 

a U(1) gauge theory; many physical features of the solution discussed here are very 
similar to the models which inspired it. 
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